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In this brief work we express the cycle index of the molecular point groups as a function
of a limited number of initial geometrical parameters. Such parameters are the number m
of elements composing the domain D of sites of substitutions in the molecule belonging to
the point group G, and the numbers (n(Cn),n(σ), . . .) of sites of D lying on the symmetry
elements (Cn, σ, . . .) for G.

1. Introduction

The application of Pòlya’s theorem to the enumeration of isomers of molecular
compounds is based on the cycle index of a permutation group of a finite set D,
molecular substitutional sites, which are transformed by the symmetry operations of
the molecular point group G [1,2,4,6,7]. Once D and G are defined, the cycle index
can be developed.

To our knowledge, no systematic study of the cycle index of all finite point
groups as a function of G and D has been reported; only some partial studies have
appeared [5]. However, such a study can render more familiar the chemical applications
of Pòlya’s theorem. It is for this reason that in the present work we have derived, in a
systematic way, the cycle indices corresponding to every finite point group acting on
a “generic” domain D, all as a function of the dimension m of D and of the numbers
of substitutional sites of the molecule that lie on the symmetry elements for G.

2. Mathematical development

Let G = {gi, i = 1, 2, . . . , |G|} be the molecular point group of order |G| and
D = {dj , j = 1, 2, . . . ,m} the domain given by the set of the m substitutional sites
of the molecule. Obviously, m is a sum of divisors of |G|,

m =
∑
k | |G|

nk,D × k, (1)

where nk,D is a non-negative integer that defines the number of site orbits of length k
present in D, and one supposes that there exists at least one site orbit of dimensions

 J.C. Baltzer AG, Science Publishers



24 I. Baraldi et al. / On the cycle index of point groups

appropriate to our problem. Under the action of any element of G, the elements of D
are rearranged, in other words, the sites permute amongst themselves. One writes

giD =
{
d′j = gidj , j = 1, 2, . . . ,m

}
=

(
d1 d2 . . . dm
d′1 d′2 . . . d′m

)
= P (gi,D) (2)

∀gi ∈ G. The set of all the distinct permutations P (gi,D) forms a permutation group
of order g 6 |G| that is indicated as P (G,D) = {P (gi,D), i = 1, 2, . . . , g}. Such an
action is a homomorphism from G to P (G,D). Moreover, because P (G,D) ⊂ Sm, it
follows from Lagrange’s theorem that g is a divisor of m!. In this work we consider
the situation of isomorphism between G and P (G,D), i.e., g = |G|. In the case of
homomorphism, P (G,D) is the permutation group of a subgroup of G and all the
following results are also valid for this subgroup.

Each one of the permutations P (gi,D) can be expressed as a product of disjoint
cycles. If with ejp we indicate the number of cycles of degree j in the permutation P ,
then we can identify a corresponding monomial

x
e1p
1 x

e2p
2 · · ·x

emp
m (3)

in the indeterminates xj (j = 1, 2, . . . ,m). The cycle index of the permutation group
P (G,D) is the arithmetic mean of these monomials, i.e.,

Z
(
P (G,D)

)
=Z(G,x1,x2, . . . ,xm) =

1
g

∑
p∈P (G,D)

x
e1p
1 x

e2p
2 · · · x

emp
m

=
1
g

r∑
i=1

hix
e1i
1 xe2i

2 · · ·x
emi
m , (4)

where the first sum is taken over all the g permutations and the second sum is over
the r permutation classes of P (G,D), hi is the number of permutations of ith class,
and the exponent eji is the number of cycles of degree j in the permutations of the
ith class. The following relationships are satisfied:

r∑
i=1

hi = g, (5)

m∑
i=1

ieij = m. (6)

Let us now develop the reasoning that allows us to obtain the expression for the
cycle index of point groups as a function of the domain D. The elements of G are
between the symmetry operations E, Ckn, σ, Skn, i and Cknσh. If with knk we indicate
a cycle of degree k contained nk times in the permutation, then the structures of the
cycles and the expressions for the monomials of the cycle index Z(P (G,D)) of the
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permutations corresponding to the symmetry operations working on D, which are a
function of m and of the sites that lie on the symmetry elements, have the form

(
1m
)
→ xm1 ;

(
1n(Cn),

(
n

j

)[(m−n(Cn))j/n])
→ xn(Cn)

1 x
(m−n(Cn))j/n
n/j ;(

1n(σ), 2[(m−n(σ))/2])→ xn(σ)
1 x

(m−n(σ))/2
2 ;(

1n(i), 2n
′(Sn),

(
n

j

)[(m−n(Sn))j/n])
→ xn(i)

1 xn
′(Sn)

2 x
(m−n(Sn))j/n
n/j ; (7)(

1n(i), 2[(m−n(i))/2])→ xn(i)
1 x

(m−n(i))/2
2 ;(

1n(i), 2[(m−n(σh))/2],

(
n

j

)[(n(σh)−n(i))j/n])
→ xn(i)

1 x
(m−n(σh))/2
2 x

(n(σh)−n(i))j/n
n/j

for P (E,D), P (Ckn ,D), P (σ,D), P (Skn,D), P (i,D), and P (Cknσh,D), respectively.
In these cyclic structures of the permutations and of the terms of Z(P (G,D)), j is
the greatest common divisor of n and k (j = gcd(n, k)), respectively, the order of the
rotation axis and the number of rotations of 2π/n around the axis; n(p) is the number
of substitutional sites lying on the symmetry element p ∈ (Cn axis, σ plane, i inversion,
Sn axis or the corresponding proper rotation axis); and n′(Sn) = (n(Sn)−n(i))/2. Of
course, x0

i = 1 (i = 1, 2, . . . ,m).

3. Expression for the cycle index

It is convenient to decompose the finite point groups in the proper rotational
point groups (Cn, Dn, T, O, I) and in the remaining extended point groups
(S2n, Cnh, Cnv, Dnd, Dnh, Td, Th, Oh, Ih). As is well known, even when a mole-
cular skeleton exhibits a symmetry group from the second set of groups, the first set
of groups may be used in enumerating stereoisomers derived from that skeleton. The
cycle indices obtained using equations (7) for the proper rotational groups and for the
extended groups are reported in tables 1 and 2, respectively. The formulas of table 1
were derived by exploiting some previous results [3]. For the formulas of table 2, we
used a procedure of resolution into disjoint subsets of the point groups (see table 3),
as now described for the case of Dnd groups. Dnd can be decomposed in the following
way:

Dnd = Dn ∪
{
S2n,S3

2n, . . . ,S2n−1
2n

}
∪ {σd1 ,σd2 , . . . ,σdn} = Dn ∪ S′2n ∪ {nσd}. (8)

A consequence of such a decomposition is that∑
P∈P (Dnd,D)

→
∑

P∈P (Dn,D)

+
∑

P∈P (S′2n,D)

+
∑

P∈P (nσd,D)

, (9)
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Table 1
Expression for the cycle index of proper rotational point groups.

Z(P (Cn,D)) =
x
n(Cn)
1
n

∑
k|n ϕ(k)x(m−n(Cn))/k

k

Z(P (Dn,D)) = 1
2Z(P (Cn,D)) +

{
1
2x
n(C2)
1 x

(m−n(C2))/2
2 (n odd),

1
4 (xn(C2)

1 x
(m−n(C2))/2
2 + x

n(C′2)

1 x
(m−n(C′2))/2

2 ) (n even)

Z(P (T,D)) = 1
12 (xm1 + 8xn(C3)

1 x
(m−n(C3))/3
3 + 3xn(C2)

1 x
(m−n(C2))/2
2 )

Z(P (O,D)) = 1
24 (xm1 + 6xn(C4)

1 x
(m−n(C4))/4
4 + 3xn(C4)

1 x
(m−n(C4))/2
2

+ 8xn(C3)
1 x

(m−n(C3))/3
3 + 6xn(C2)

1 x
(m−n(C2))/2
2 )

Z(P (I,D)) = 1
60 (xm1 + 24xn(C5)

1 x
(m−n(C5))/5)
5 + 20xn(C3)

1 x
(m−n(C3))/3
3 + 15xn(C2)

1 x
(m−n(C2))/2
2 )

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .

ϕ(k), Euler 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 . . .
function

then using equations (7) and n(σd) = n(σd1) = · · · = n(σdn) one obtains the formula
for the Z(P (Dnd,D)) reported in table 2. In tables 4 and 5, some applications for
particular rotational point groups are shown.

In the formulas of tables 1, 2, it is supposed that equivalent elements of symmetry
leave the same numbers of substitutional sites invariant, as symmetry imposes. More-
over, the arithmetical properties of cyclic groups enable the cycle index of tables 1
and 2 to be expressed through the Euler function ϕ(n), which determines the number
of positive integers (6 n) which are coprime to n. For the relationships that appear in
table 1, see [3], while for those in table 2, relative to the permutations of the groups
S2n, Cnh, Dnd and Dnh, see the appendix.

To obtain the enumerator of the isomers from the cycle index Z(P (G,D)) =
Z(G,x1,x2, . . . ,xm), one must make the substitution

xk → wk1 + wk2 + · · ·+ wks , (10)

where s indicates the number of choices for elements or molecular groups that can be
attached to each one of m sites of substitution, and wi is a weight variable for the ith
substituent. The series counting isomers is just

Z
(
G,w1 + w2 + · · ·+ ws,w

2
1 + w2

2 + · · ·+ w2
s , . . . ,w

m
1 + wm2 + · · · +wms

)
, (11)

and the sum of the coefficients of this series gives the total number of isomers, a number
equal to

Z(G, s, s, . . . , s). (12)

Expanding the isomer-counting polynomial (equation (11)) one obtains a combi-
nation of terms of the general form

wn1
1 w

n2
2 · · ·wnss , (13)
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Table 2
Expression for the cycle index of extended point groups.

Z(P (S2n,D)) = 1
2Z(P (Cn,D)) + 1

2nx
n(i)
1 xn

′(S2n)
2

∑′
k|2n ϕ(2n/k)x(m−n(S2n))k/2n

2n/k

(
∑′

k|2n is over the odd divisors of 2n)

Z(P (Cnv,D)) = 1
2Z(P (Cn,D)) +

{
1
2x
n(σv )

1 x
(m−n(σv))/2
2 (n odd),

1
4 (xn

(σv )

1 x
(m−n(σv))/2
2 + x

n(σd)
1 x

(m−n(σd))/2
2 ) (n even)

Z(P (Cnh,D)) = 1
2Z(P (Cn,D)) + 1

2nx
n(i)
1 x

(m−n(σh))/2
2

∑
k|n ϕ(k)x(n(σh)−n(i))/k

k

Z(P (Dnd,D)) = 1
2Z(P (Dn,D)) + 1

4x
n(σd)
1 x

(m−n(σd))/2
2

+ 1
4nx

n(i)
1 xn

′(Cn)
2

∑′
k|2n ϕ(2n/k)x(m−n(Cn))k/2n

2n/k , n′(Cn) = (n(Cn)− n(i))/2

Z(P (Dnh,D)) = 1
2Z(P (Dn,D))

+


1

4n (pxn(σv)
1 x

(m−n(σv))/2
2 + pxn(σd)

1 x
(m−n(σd))/2
2 + xn(i)

1 x
(m−n(σh))/2
2

∑
k|n ϕ(k)x(n(σh)−n(i))/k

k )

(n = 2p, even),
1

4n (nxn(σv)
1 x

(m−n(σv))/2
2 + xn(i)

1 x
(m−n(σh))/2
2

∑
k|n ϕ(k)x(n(σh)−n(i))/k

k ) (n odd)

Z(P (Td,D)) = 1
2Z(P (T,D)) + 1

24 (6xn(i)
1 xn

′(S4)
2 x

(m−n(C2))/4
4 + 6xn(σ)

1 x
(m−n(σ))/2
2 )

Z(P (Th,D)) = 1
2Z(P (T,D)) + 1

24 (xn(i)
1 x

(m−n(i))/2
2 + 3xn(σ)

1 x
(m−n(σ))/2
2 + 8xn(i)

1 xn
′(S6)

2 x
(m−n(C3))/6
6 )

Z(P (Oh,D)) = 1
2Z(P (O,D)) + 1

48 (xn(i)
1 x

(m−n(i))/2
2 + 8xn(i)

1 xn
′(S6)

2 x
(m−n(C3))/6
6

+ 6xn(i)
1 xn

′(S4)
2 x

(m−n(C4))/4
4 + 3xn(σh)

1 x
(m−n(σh))/2
2

+ 6xn(σd)
1 x

(m−n(σd))/2
2 )

Z(P (Ih,D)) = 1
2Z(P (I,D)) + 1

120 (xn(i)
1 x

(m−n(i))/2
2 + 24xn(i)

1 xn
′(S10)

2 x
(m−n(C5))/10
10

+ 20xn(i)
1 x

n′(S6)
2 x

(m−n(C3))/6
6 + 15xn(σ)

1 x
(m−n(σ))/2
2 )

with ni = 1, 2, . . . ,m and
∑s

i=1 ni = m. The coefficient of this term, in the expanded
form, is the number of isomers of the general formula

RAn1Bn2 · · ·Zns , (14)

where R is the formula for the root structure on which substitutions are being made,
and A,B, . . . ,Z indicate elements or molecular groups corresponding to the respective
weights w1,w2, . . . ,ws.
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Table 3
Resolution of extended groups.

S2n = Cn ∪ {S2n,S3
2n, . . . ,S2n−1

2n } = Cn ∪ S′2n

Cnv =

{
Cn ∪ {nσv} (n odd),
Cn ∪ {pσv} ∪ {pσ′v} (n = 2p, even)

Cnh = Cn ∪ {σh,Cnσh,C2
nσh, . . . ,Cn−1

n σh} = Cn ∪ Cnσh

Dnh =

{
Dn ∪ {σh,Cnσh, . . . ,Cn−1

n σh} ∪ {nσv} = Dn ∪ Cnσh ∪ {nσv} (n odd),
Dn ∪ {σh,Cnσh, . . . ,Cn−1

n σh} ∪ {pσv} ∪ {pσd} = Dn ∪ Cnσh ∪ {pσv} ∪ {pσd}
(n = 2p, even)

Dnd = Dn ∪ {S2n,S3
2n, . . . ,S2n−1

2n } ∪ {σd1 , σd2 , . . . ,σdn} = Dn ∪ S′2n ∪ {nσd}

Td = T ∪ {S4x,S3
4x,S4y ,S3

4y,S4z,S3
4z} ∪ {σ1, . . . , σ6}

Th = T ∪ {i, 3σ, 4S6, 4S5
6 }

Oh = O ∪ {i, 8S6, 6S4, 3σh, 6σd}

Ih = I ∪ {i, 12S10, 12S3
10, 20S6, 15σ}

Table 4
Examples of the cyclic index of Cn and Dn point groups.

Z(P (Cn,D))

Z(P (C2,D)) =
x
n(C2)
1

2 (x(m−n(C2))
1 + x

(m−n(C2))/2
2 )

(a) H2O2: m = 2, n(C2) = 0 Z(P (C2,D)) = 1
2 (x2

1 + x1
2)

(b) H2C(C6H5)2: m = 12, n(C2) = 0 Z(P (C2,D)) = 1
2 (x12

1 + x6
2)

Z(P (C3,D)) =
x
n(C3)
1

3 (xm−n(C3)
1 + 2x(m−n(C3))/3

3 )

HC(C6H5)3: m = 16, n(C3) = 1 Z(P (C3,D)) = 1
3 (x16

1 + 2x1
1x

5
3)

Regular polygon of n sides

Vertex: m = n, n(Cn) = 0 Z(P (Cn,D)) = 1
n

∑
k|n ϕ(k)xn/kk

Pyramid with base a regular polygon of n sides

Vertex: m = n+ 1, n(Cn) = 1 Z(P (Cn,D)) =
x1

1
n

∑
k|n ϕ(k)xn/kk

Z(P (Dn,D))

Z(P (D2,D)) = 1
4 (xm1 + xn(C2x)

1 x
(m−n(C2x))/2
2 + x

n(C2y)
1 x

(m−n(C2y))/2
2 + xn(C2z)

1 x
(m−n(C2z ))/2
2 )

C4n+2H2n+4 (acenes, n is the number of condensed rings): m = 2n+ 4

n(C2x) = n(C2y) = n(C2z) = 0 (n even)

n(C2x) = n(C2y) = 0, n(C2z) = 2 (n odd)

Z(P (D2,D)) = 1
4 (x2n+4

1 + 3xn+2
2 ) (n even)

Z(P (D2,D)) = 1
4 (x2n+4

1 + 2xn+2
2 + x2

1x
n+1
2 ) (n odd)

Z(P (D3,D)) = 1
6 (xm1 + 2xn(C3)

1 x
(m−n(C3))/3
3 + 3xn(C2)

1 x
(m−n(C2))/2
2 )

B(C6H5)3: m = 15, n(C3) = 0, n(C2) = 1 Z(P (D3,D)) = 1
6 (x15

1 + 2x5
3 + 3x1

1x
7
2)

A n-sided prism or antiprism

Vertex: m = 2n, n(Cn) = 0, n(C2) = n(C3) = 0 Z(P (Dn,D)) = 1
2n

∑
k|n ϕ(k)x2n/k

k + 1
2x
n
2
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Table 5
Examples of the cyclic index of T, O and I point groups.

Z(P (T,D))
Tetrahedron

(a) Vertex or faces: m = 4, n(C3) = 1, n(C2) = 0
Z(P (T,D)) = 1

12 (x4
1 + 8x1

1x
1
3 + 3x2

2)
(b) Edges: m = 6, n(C3) = 0, n(C2) = 2

Z(P (T,D)) = 1
12 (x6

1 + 3x2
1x

2
2 + 8x2

3)

Z(P (O,D))
Octahedron and cube

(a) Vertex of octahedron or faces of cube: m = 6, n(C4) = 2, n(C3) = n(C2) = 0
Z(P (O,D)) = 1

24 (x6
1 + 6x2

1x
1
4 + 3x2

1x
2
2 + 8x2

3 + 6x3
2)

(b) Faces of octahedron or vertex of cube: m = 8, n(C4) = 0, n(C3) = 2, n(C2) = 0
Z(P (O,D)) = 1

24 (x8
1 + 6x2

4 + 3x4
2 + 8x2

1x
2
3 + 6x4

2)
(c) Edges of octahedron and of cube: m = 12, n(C4) = 0, n(C3) = 0, n(C2) = 2

Z(P (O,D)) = 1
24 (x12

1 + 6x3
4 + 3x6

2 + 8x4
3 + 6x2

1x
5
2)

Z(P (I,D))
Icosahedron and dodecahedron

(a) Vertex of icosahedron or faces of dodecahedron: m = 12, n(C5) = 2, n(C3) = n(C2) = 0
Z(P (I,D)) = 1

60 (x12
1 + 24x2

1x
2
5 + 20x4

3 + 15x6
2)

(b) Vertex of dodecahedron or faces of icosahedron: m = 20, n(C5) = 0, n(C3) = 2, n(C2) = 0
Z(P (I,D)) = 1

60 (x20
1 + 24x4

5 + 20x2
1x

6
3 + 15x10

2 )
(c) Edges of icosahedron and of dodecahedron: m = 30, n(C5) = n(C3) = 0, n(C2) = 2

Z(P (I,D)) = 1
60 (x30

1 + 24x6
5 + 20x10

3 + 15x2
1x

14
2 )

Truncated icosahedron
(a) Vertex: m = 60, n(C5) = n(C3) = n(C2) = 0

Z(P (I,D)) = 1
60 (x60

1 + 24x12
5 + 20x20

3 + 15x30
2 )

(b) Faces: m = 32, n(C5) = n(C3) = 2, n(C2) = 0
Z(P (I,D)) = 1

60 (x32
1 + 24x2

1x
6
5 + 20x2

1x
10
3 + 15x16

2 )
(c) Edges: m = 90, n(C5) = n(C3) = 0, n(C2) = 2

Z(P (I,D)) = 1
60 (x90

1 + 24x18
5 + 20x30

3 + 15x2
1x

44
2 )

Appendix

Let Cr be the cyclic group of order r, then the cycle index of Cr is

1
r

∑
d|r

ϕ(r/d)xdr/d, (A1)

where the sum is over all the divisors of r. In fact, the following two properties are
worth noting:

(1) called α, a generator of Cr, for each k ∈ {1, 2, . . . , r}, the permutation αk ∈ Cr
is of type xdr/d with g = gcd(r, k);

(2) for each d divisor of r, the elements k ∈ {1, 2, . . . , r − 1} such that k < r,
gcd(r, k) = d are ϕ(r/d), because they are as many as the numbers t such that
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k = td, r = hd with t and h primes between them and t < h, or they are
ϕ(h) = ϕ(r/d).

From (1) and (2) it follows that∑
k=1,2,...,r−1

xdr/d =
∑
t|r

ϕ(r/t)xtr/t, (A2)

where in the left sum d indicates the gcd(r, k), while in the right sum it is extended
to all the proper divisors of r. Adding the identity permutation, the thesis is obtained.

In the case where the permutations of the group S2n corresponding to the roto-
reflections are considered, the sum is extended only to odd divisors of 2n.

References

[1] A.T. Balaban, in: Chemical Group Theory – Introduction and Fundamentals, eds. D. Bonchev and
D.H. Rouvray (Gordon and Breach, Yverdon, 1994) chapter 5, pp. 159–208.

[2] K. Balasubramanian, in: Chemical Group Theory – Techniques and Applications, eds. D. Bonchev
and D.H. Rouvray (Gordon and Breach, Amsterdam, 1995) chapter 2, pp. 37–70.

[3] N.L. Biggs, Discrete Mathematics (Oxford Science Publications, Oxford, 1989).
[4] S. Fujita, Symmetry and Combinatorial Enumeration in Chemistry (Springer, Berlin, 1991).
[5] B.A. Kennedy, D.A. McQuarrie and C.H. Brubaker, Jr., Inorg. Chem. 3 (1964) 265.
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